Published in

Springer Verlag, International Journal of Earth Sciences

DOI: 10.1007/s00531-015-1254-3

Links

Tools

Export citation

Search in Google Scholar

Paleomagnetism from Deception Island (South Shetlands archipelago, Antarctica), new insights into the interpretation of the volcanic evolution using a geomagnetic model

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Deception Island shows the most recent exposed active volcanism in the northern boundary of the Bransfield Trough. The succession of the volcanic sequence in the island is broadly divided into pre- and post-caldera collapse units although a well-constrained chronological identification of the well-defined successive volcanic episodes is still needed. A new paleomagnetic investigation was carried out on 157 samples grouped in 20 sites from the volcanic deposits of Deception Island (South Shetlands archipelago, Antarctic Peninsula region) distributed in: (1) volcanic breccia (3 sites) and lavas (2 sites) prior to the caldera collapse; (2) lavas emplaced after the caldera collapse (10 sites); and (3) dikes cutting pre- and the lower- most post-caldera collapse units (5 sites). The information revealed by paleomagnetism provides new data about the evolution of the multi-episodic volcanic edifice of this Quaternary volcano, suggesting that the present-day position of the volcanic materials is close to their original emplace- ment position. The new data have been combined with previous paleomagnetic results in order to tentatively propose an age when comparing the paleomagnetic data with a global geomagnetic model. Despite the uncertainties in the use of averaged paleomagnetic data per volcanic units, the new data in combination with tephra occurrences noted elsewhere in the region suggest that the pre-caldera units (F1 and F2) erupted before 12,000 year BC, the caldera collapse took place at about 8300 year BC, and post-cal- dera units S1 and S2 are younger than 2000 year BC.