National Academy of Sciences, Proceedings of the National Academy of Sciences, 52(101), p. 18223-18227, 2004
Full text: Download
There exists a robust day/night pattern in the incidence of adverse cardiac events with a peak at approximately 10 a.m. This peak traditionally has been attributed to day/night patterns in behaviors affecting cardiac function in vulnerable individuals. However, influences from the endogenous circadian pacemaker independent from behaviors may also affect cardiac control. Heartbeat dynamics under healthy conditions exhibit robust complex fluctuations characterized by self-similar temporal structures, which break down under pathologic conditions. We hypothesize that these dynamical features of the healthy human heartbeat have an endogenous circadian rhythm that brings the features closer to those observed under pathologic conditions at the endogenous circadian phase corresponding to approximately 10 a.m. We investigate heartbeat dynamics in healthy subjects recorded throughout a 10-day protocol wherein the sleep/wake and behavior cycles are desynchronized from the endogenous circadian cycle, enabling assessment of circadian factors while controlling for behavior-related factors. We demonstrate that the scaling exponent characterizing temporal correlations in heartbeat dynamics does exhibit a significant circadian rhythm (with a sharp peak at the circadian phase corresponding to approximately 10 a.m.), which is independent from scheduled behaviors and mean heart rate. Cardiac dynamics under pathologic conditions such as congestive heart failure also are associated with a larger value of the scaling exponent of the interbeat interval. Thus, the sharp peak in the scaling exponent at the circadian phase coinciding with the period of highest cardiac vulnerability observed in epidemiological studies suggests that endogenous circadian-mediated influences on cardiac control may be involved in the day/night pattern of adverse cardiac events in vulnerable individuals.