Published in

BioMed Central, Molecular Medicine, 4(18), p. 565-576, 2012

DOI: 10.2119/molmed.2011.00493

Links

Tools

Export citation

Search in Google Scholar

Flexible Targeting of ErbB Dimers That Drive Tumorigenesis by Using Genetically Engineered T Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Pharmacological targeting of individual ErbB receptors elicits antitumor activity, but is frequently compromised by resistance leading to therapeutic failure. Here, we describe an immunotherapeutic approach that exploits prevalent and fundamental mechanisms by which aberrant upregulation of the ErbB network drives tumorigenesis. A chimeric antigen receptor named T1E28z was engineered, in which the promiscuous ErbB ligand, T1E, is fused to a CD28 + CD3ζ endodomain. Using a panel of ErbB-engineered 32D hematopoietic cells, we found that human T1E28z+ T cells are selectively activated by all ErbB1-based homodimers and heterodimers and by the potently mitogenic ErbB2/3 heterodimer. Owing to this flexible targeting capability, recognition and destruction of several tumor cell lines was achieved by T1E28z+ T cells in vitro, comprising a wide diversity of ErbB receptor profiles and tumor origins. Furthermore, compelling antitumor activity was observed in mice bearing established xenografts, characterized either by ErbB1/2 or ErbB2/3 overexpression and representative of insidious or rapidly progressive tumor types. Together, these findings support the clinical development of a broadly applicable immunotherapeutic approach in which the propensity of solid tumors to dysregulate the extended ErbB network is targeted for therapeutic gain.