Links

Tools

Export citation

Search in Google Scholar

How does the "ancient" asexual Philodina roseola (Rotifera: Bdelloidea) handle potential UVB-induced mutations?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Summary Like other obligate asexuals, bdelloid rotifers are expected to suffer from degradation of their genomes through processes including the accumulation of deleterious mutations. However, sequence-based analyses in this regard remain inconclusive. Instead of looking for historical footprints of mutations in these ancient asexuals, we directly examined the susceptibility and ability to repair point mutations by the bdelloid Philodina roseola Ehrenberg, 1832 by inducing cyclobutane-pyrimidine dimers (CPDs) via exposure to UVB radiation (280-320 nm). For comparison, we performed analogous experiments with the facultative asexual monogonont rotifer Brachionus rubens Ehrenberg, 1838. Different strategies were found for the two species. P. roseola appeared to shield itself from CPD induction through uncharacterized UV-absorbing compounds and, except for the genome reconstruction that occurs after desiccation, was largely unable to repair UVB-induced damage. By contrast, B. rubens was more susceptible to UVB-irradiation, but could repair all induced damage in about two hours. In addition, whereas UV-irradiation had a significant negative impact on the reproductive output of P. roseola, and especially so after desiccation, that of B. rubens was unaffected. Although the strategy of P. roseola might suffice under natural conditions where UVB-irradiation is less intense, the lack of any immediate CPD repair mechanisms in this species remains perplexing. It remains to be investigated how typical these results are for bdelloids as a group and therefore how reliant these animals are on desiccation-dependent genome repair to correct potential DNA damage given their obligate asexual lifestyle.