Dissemin is shutting down on January 1st, 2025

Published in

Geometry Driven Statistics, p. 239-259

DOI: 10.1002/9781118866641.ch12

Links

Tools

Export citation

Search in Google Scholar

Evaluation of diagnostics for hierarchical spatial statistical models

Book chapter published in 2015 by Noel Cressie ORCID, Sandy Burden
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the twenty-first century, we are able to build large, complex statistical models that are very much like the scientific processes they represent. We use diagnostics to highlight inadequacies in the statistical model, and because of the complexity many different diagnostics are needed. This is analogous to the process of diagnosis in the medical field, where a suite of diagnostics is used to assess the health of a patient. This chapter is focused on evaluating model diagnostics. In the medical literature, a structured approach to diagnostic evaluation is used based on measurable outcomes such as sensitivity, specificity, ROC curves, and false discovery rate. We suggest using the same framework to evaluate model diagnostics for hierarchical spatial statistical models; and we make the observation that a different curve, which we have called the Discovery (DSC) curve, gives another way to evaluate a diagnostic. For a spatial model, the True negatives and False positives are defined in our proposed evaluation procedure through cross-validation.