Published in

Elsevier, Clinical Radiology, 3(67), p. 207-215

DOI: 10.1016/j.crad.2011.07.042

Links

Tools

Export citation

Search in Google Scholar

Feasibility and diagnostic accuracy of a low radiation exposure protocol for prospective ECG-triggering coronary MDCT angiography

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aim: To compare the feasibility, accuracy, and effective radiation dose (ED) of multidetector computed tomography (MDCT) in the detection of coronary artery disease using a combined ED-saving strategy including prospective electrocardiogram (ECG) triggering with a short x-ray window and a body mass index (BMI)-adapted imaging protocol using adaptive statistical iterative reconstruction (ASIR; group 1), in comparison with a prospective ECG triggering strategy alone (group 2). Materials and methods: One hundred and seventy patients scheduled for invasive coronary angiography (ICA) were evaluated. Fourteen patients were not eligible for MDCT. The remaining 156 patients were randomized to group 1 (78 patients) and group 2 (78 patients). Eight and 11 patients in groups 1 and 2, respectively, were excluded after randomization because the patients' heart rates were >65 beats/min. MDCT images were assessed for feasibility, signal-to-noise ration (SNR), and contrast-to-noise ratio (CNR), accuracy in detection of coronary stenoses >50% versus ICA and for ED. Results: The feasibility, SNR, CNR, accuracy in a segment-based and patient-based model were similar in both groups (97 versus 95%, 14.5 ± 3.9 versus 14.2 ± 4.1, 16 ± 4.6 versus 16.5 ± 4.4, 95 versus 94% and 97 versus 99%, respectively). The ED in group 1 was 72% lower than in group 2 (2.1 ± 1.2 versus 7.5 ± 1.8 mSv, respectively; p