Published in

Public Library of Science, PLoS ONE, 2(5), p. e9435, 2010

DOI: 10.1371/journal.pone.0009435

Links

Tools

Export citation

Search in Google Scholar

An Atypical Riboflavin Pathway Is Essential for Brucella abortus Virulence

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Brucellosis is a worldwide zoonosis that affects livestock and humans and is caused by closely related Brucella spp., which are adapted to intracellular life within cells of a large variety of mammals. Brucella can be considered a furtive pathogen that infects professional and non-professional phagocytes. In these cells Brucella survives in a replicative niche, which is characterized for having a very low oxygen tension and being deprived from nutrients such as amino acids and vitamins. Among these vitamins, we have focused on riboflavin (vitamin B2). Flavin metabolism has been barely implicated in bacterial virulence. We have recently described that Brucella and other Rhizobiales bear an atypical riboflavin metabolic pathway. In the present work we analyze the role of the flavin metabolism on Brucella virulence. Mutants on the two lumazine synthases (LS) isoenzymes RibH1 and RibH2 and a double RibH mutant were generated. These mutants and different complemented strains were tested for viability and virulence in cells and in mice. In this fashion we have established that at least one LS must be present for B. abortus survival and that RibH2 and not RibH1 is essential for intracellular survival due to its LS activity in vivo. In summary, we show that riboflavin biosynthesis is essential for Brucella survival inside cells or in mice. These results highlight the potential use of flavin biosynthetic pathway enzymes as targets for the chemotherapy of brucellosis.