Published in

American Chemical Society, Journal of Physical Chemistry Letters, 19(2), p. 2396-2401, 2011

DOI: 10.1021/jz201065t

Links

Tools

Export citation

Search in Google Scholar

Capacitive energy storage from -50 to 100 °C using an ionic liquid electrolyte

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from −50 to 100 °C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s.Keywords: supercapacitors; carbon nanotube; onion-like carbon; ionic liquid; capacitance