Dissemin is shutting down on January 1st, 2025

Published in

Cell Press, Trends in Biochemical Sciences, 8(36), p. 405-414

DOI: 10.1016/j.tibs.2011.05.002

Links

Tools

Export citation

Search in Google Scholar

How dormant origins promote complete genome replication

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many replication origins that are licensed by loading MCM2-7 complexes in G1 are not normally used. Activation of these dormant origins during S phase provides a first line of defence for the genome if replication is inhibited. When replication forks fail, dormant origins are activated within regions of the genome currently engaged in replication. At the same time, DNA damage response kinases activated by the stalled forks preferentially suppress the assembly of new replication factories, thereby ensuring that chromosomal regions experiencing replicative stress complete synthesis before new regions of the genome are replicated. Mice expressing reduced levels of MCM2-7 have fewer dormant origins, are cancer prone and are genetically unstable, thus demonstrating the importance of dormant origins for preserving genome integrity. Here we review the function of dormant origins, the molecular mechanism of their regulation and their physiological implications.