Published in

American Association for Cancer Research, Cancer Discovery, 7(1), p. 608-625, 2011

DOI: 10.1158/2159-8290.cd-11-0046

Links

Tools

Export citation

Search in Google Scholar

Amplification of CRKL Induces Transformation and Epidermal Growth Factor Receptor Inhibitor Resistance in Human Non-Small Cell Lung Cancers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We previously identified a region of recurrent amplification on chromosome 22q11.21 in a subset of primary lung adenocarcinomas. Here we show that CRKL, encoding for an adaptor protein, is amplified and overexpressed in non–small cell lung cancer (NSCLC) cells that harbor 22q11.21 amplifications. Overexpression of CRKL in immortalized human airway epithelial cells promoted anchorage-independent growth and tumorigenicity. Oncogenic CRKL activates the SOS1-RAS-RAF-ERK and SRC-C3G-RAP1 pathways. Suppression of CRKL in NSCLC cells that harbor CRKL amplifications induced cell death. Overexpression of CRKL in epidermal growth factor receptor (EGFR)-mutant cells induces resistance to gefitinib by activating extracellular signal–regulated kinase and AKT signaling. We identified CRKL amplification in an EGFR inhibitor–treated lung adenocarcinoma that was not present before treatment. These observations demonstrate that CRKL overexpression induces cell transformation, credential CRKL as a therapeutic target for a subset of NSCLC that harbor CRKL amplifications, and implicate CRKL as an additional mechanism of resistance to EGFR-directed therapy. Significance: These studies credential CRKL as an oncogene in a subset of NSCLC. Overexpression of CRKL induces cell transformation and resistance to epidermal growth factor receptor inhibitor treatment and suggest that therapeutic interventions targeting CRKL may confer a clinical benefit in a defined subset of NSCLCs. Cancer Discovery; 1(7); 608–25. ©2011 AACR. Read the Commentary on this article by Ladanyi, p. 560 This article is highlighted in the In This Issue feature, p. 539