Published in

BioMed Central, BMC Biotechnology, 1(7), 2007

DOI: 10.1186/1472-6750-7-43

Links

Tools

Export citation

Search in Google Scholar

A novel real-time ultrasonic method for prion protein detection using plasminogen as a capture molecule

Journal article published in 2007 by Carmen Negredo, Eoin Monks, Torres Sweeney ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background High resolution ultrasonography (HR-US) can monitor the molecular changes and biochemical interactions between proteins in real-time. The aim of this study was to use HR-US to characterize the real-time interactions between plasminogen coated beads and PrPSc and to determine if this approach could be applied to the identification of animals affected by prion diseases. Plasminogen, immobilized to beads, was used as a capturing tool for PrPSc in brain homogenates from scrapie affected sheep and the binding reaction was monitored in real-time in an ultrasonic cell. Results Changes in the ultrasonic parameters suggested that three processes occurred during the incubation: binding, protein-protein network formation and precipitation and that these processes occurred in a concentration dependent manner. Conversely, when homogenates from normal sheep were similarly examined, no evidence for the occurrence of these processes was found indicating the specificity of the interaction between the plasminogen coated beads and PrPSc. Conclusion These results indicate firstly, that the plasminogen coated beads binded selectively to PrPSc and secondly, that a HR-US system can discriminate between scrapie affected and non-affected samples and thus has potential as a tool for the rapid diagnosis for prion diseases. This approach has the significant advantage of not requiring a proteinase K pre-digestion step, which is routinely used in current PrPSc detection assays.