Published in

American Society of Hematology, Blood, 21(121), p. 4388-4395, 2013

DOI: 10.1182/blood-2013-02-486050

Links

Tools

Export citation

Search in Google Scholar

Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We studied mutations of MPL exon 10 in patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF), first investigating a cohort of 892 consecutive patients. MPL mutation scanning was performed on granulocyte genomic DNA by using a high-resolution melt assay, and the mutant allele burden was evaluated by using deep sequencing. Somatic mutations of MPL, all but one involving codon W515, were detected in 26/661 (4%) patients with ET, 10/187 (5%) with PMF, and 7/44 (16%) patients with post-ET myelofibrosis. Comparison of JAK2 (V617F)-mutated and MPL-mutated patients showed only minor phenotypic differences. In an extended group of 62 MPL-mutated patients, the granulocyte mutant allele burden ranged from 1% to 95% and was significantly higher in patients with PMF or post-ET myelofibrosis compared with those with ET. Patients with higher mutation burdens had evidence of acquired copy-neutral loss of heterozygosity (CN-LOH) of chromosome 1p in granulocytes, consistent with a transition from heterozygosity to homozygosity for the MPL mutation in clonal cells. A significant association was found between MPL-mutant allele burden greater than 50% and marrow fibrosis. These observations suggest that acquired CN-LOH of chromosome 1p involving the MPL location may represent a molecular mechanism of fibrotic transformation in MPL-mutated myeloproliferative neoplasms.