Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Materials Science and Engineering: C, (58), p. 310-315, 2016

DOI: 10.1016/j.msec.2015.08.042

Links

Tools

Export citation

Search in Google Scholar

Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work nanostructured film composites of the monoamine oxidase B (MAO-B) enzyme, free or encapsulated in liposomes, were fabricated by the layer-by-layer (LbL) self-assembly technique, employing polyethylene imine (PEI) as polycation. Initially, the MAO-B enzyme was incorporated into liposomes in order to preserve its enzymatic structure ensuring their activity and catalytic stability. The LbL film growth was monitored by surface plasmon resonance (SPR) by gold resonance angle shift analysis after each bilayer deposition. Subsequently, the films were applied as amperometric biosensors for dopamine detection using Prussian Blue (PB) as the electron mediator. The biosensor fabricated by MAO-B incorporated into liposomes composed of DPPG:POPG in the ratio (1:4) (w/w) showed the best performance with a sensitivity of 0.86 (μA cm− 2)/(mmol L− 1) and a detection limit of 0.33 mmol L− 1. ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)