Published in

Elsevier, Marine Geology

DOI: 10.1016/j.margeo.2015.09.007

Links

Tools

Export citation

Search in Google Scholar

Significance of bottom currents in deep-sea morphodynamics: An example from the Alboran Sea

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present an interdisciplinary study of the geomorphology, sedimentology and physical oceanography of the Alboran Sea (south-western Mediterranean Sea) to evaluate the potential role of bottom currents in shaping the Spanish and Moroccan continental margins and adjacent basins. Bathymetric and seismic data have allowed the recognition of the contourite deposits, including depositional (plastered, sheeted, channel-related, mounded confined, elongated and separated drifts), erosive (moats, channels and furrows) and mixed (terraces and scarps) features. Hydrographic data offer new insights into the distribution of the Mediterranean water masses, and reveal that bottom circulation of the Western Intermediate Water (WIW) and the Levantine Intermediate Water (LIW) interact with the Spanish slope, and the Western Mediterranean Deep Water (WMDW) on the Moroccan slope, Spanish base-of-slope and deep basins. The integration of distinct datasets and approaches allows a proposal of a new sedimentary model for the Alboran Sea that details the significance of bottom current processes in shaping deep-sea morphology. This model considers the bottom circulation of water masses governs physiography, that interface positions of water-masses with contrasting densities sculpt terraces on a regional scale, and that the morphologic obstacles play an essential role in the local control of processes and water-mass distributions. Our findings demonstrate the pivotal role of bottom water circulation in seafloor shaping and sedimentary stacking patterns for continental margins, establishing a new outlook for future studies of deep marine sedimentation.