American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 4(296), p. H1017-H1026, 2009
DOI: 10.1152/ajpheart.01216.2008
Full text: Download
Computational models of cardiac myocytes are important tools for understanding ionic mechanisms of arrhythmia. This work presents a new model of the canine epicardial myocyte that reproduces a wide range of experimentally observed rate-dependent behaviors in cardiac cell and tissue, including action potential (AP) duration (APD) adaptation, restitution, and accommodation. Model behavior depends on updated formulations for the 4-aminopyridine-sensitive transient outward current ( Ito1), the slow component of the delayed rectifier K+ current ( IKs), the L-type Ca2+ channel current ( ICa,L), and the Na+-K+ pump current ( INaK) fit to data from canine ventricular myocytes. We found that Ito1 plays a limited role in potentiating peak ICa,L and sarcoplasmic reticulum Ca2+ release for propagated APs but modulates the time course of APD restitution. IKs plays an important role in APD shortening at short diastolic intervals, despite a limited role in AP repolarization at longer cycle lengths. In addition, we found that ICa,L plays a critical role in APD accommodation and rate dependence of APD restitution. Ca2+ entry via ICa,L at fast rate drives increased Na+-Ca2+ exchanger Ca2+ extrusion and Na+ entry, which in turn increases Na+ extrusion via outward INaK. APD accommodation results from this increased outward INaK. Our simulation results provide valuable insight into the mechanistic basis of rate-dependent phenomena important for determining the heart's response to rapid and irregular pacing rates (e.g., arrhythmia). Accurate simulation of rate-dependent phenomena and increased understanding of their mechanistic basis will lead to more realistic multicellular simulations of arrhythmia and identification of molecular therapeutic targets.