Published in

Oxford University Press, FEMS Yeast Research, 2(10), p. 209-213, 2010

DOI: 10.1111/j.1567-1364.2009.00602.x

Oxford University Press (OUP), FEMS Yeast Research, 2(10), p. 209-213

DOI: 10.1111/j.1567-1364.2010.00602.x

Links

Tools

Export citation

Search in Google Scholar

Evolutionary aspects of urea utilization by fungi

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The higher fungi exhibit a dichotomy with regard to urea utilization. The hemiascomycetes use urea amidolyase (DUR1,2), whereas all other higher fungi use the nickel-containing urease. Urea amidolyase is an energy-dependent biotin-containing enzyme. It likely arose before the Euascomycete/Hemiascomycete divergence c. 350 million years ago by insertion of an unknown gene into one copy of a duplicated methylcrotonyl CoA carboxylase (MccA). The dichotomy between urease and urea amidolyase coincides precisely with that for the Ni/Co transporter (Nic1p), which is present in the higher fungi that use urease and is absent in those that do not. We suggest that the selective advantage for urea amidolyase is that it allowed the hemiascomycetes to jettison all Ni(2+)- and Co(2+)-dependent metabolisms and thus to have two fewer transition metals whose concentrations need to be regulated. Also, the absence of MccA in the hemiascomycetes coincides with and may explain their production of fusel alcohols.