Published in

Elsevier, European Journal of Pharmaceutical Sciences, 4(22), p. 315-323, 2004

DOI: 10.1016/j.ejps.2004.03.015

Links

Tools

Export citation

Search in Google Scholar

Development and in vivo evaluation of an oral insulin–PEG delivery system

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Insulin-monomethoxypoly(ethylene glycol) derivatives were obtained by preparation of mono- and di-terbutyl carbonate insulin derivatives, reaction of available protein amino groups with activated 750 Da PEG and, finally, amino group de-protection. This procedure allowed for obtaining high yield of insulin-1PEG and insulin-2PEG. In vivo studies carried out by subcutaneous injection into diabetic mice demonstrated that the two bioconjugates maintained the native biological activity. In vitro, PEGylation was found to enhance the hormone stability towards proteases. After 1 h incubation with elastase, native insulin, insulin-1PEG and insulin-2PEG undergo about 70, 30 and 10% degradation, respectively, while in the presence of pepsin protein degradation was 100, 70 and 50%, respectively. The attachment of low molecular weight PEG did not significantly (P >0.05) alter insulin permeation behavior across the intestinal mucosa. Insulin-1PEG was formulated into mucoadhesive tablets constituted by the thiolated polymer poly(acrylic acid)-cysteine. The therapeutic agent was sustained released from these tablets within 5 h. In vivo, by oral administration to diabetic mice, the glucose levels were found to decrease of about 40% since the third hour from administration and the biological activity was maintained up to 30 h. According to these results, the combination of PEGylated insulin with a thiolated polymer used as drug carrier matrix might be a promising strategy for oral insulin administration.