Published in

Elsevier, Acta Biomaterialia, 4(8), p. 1459-1468, 2012

DOI: 10.1016/j.actbio.2011.12.026

Links

Tools

Export citation

Search in Google Scholar

Study of nanoscale structures in hydrated biomaterials using small-angle neutron scattering

Journal article published in 2011 by Arnold Luk, N. Sanjeeva Murthy, Wenjie Wang, Ramiro Rojas ORCID, Joachim Kohn
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Distribution of water in three classes of biomedically relevant and degradable polymers was investigated using small-angle neutron scattering. In semicrystalline polymers, such as poly(lactic acid) and poly(glycolic acid), water was found to diffuse preferentially into the non-crystalline regions. In amorphous polymers, such as poly(d,l-lactic acid) and poly(lactic-co-glycolic acid), the scattering after 7 days of incubation was attributed to water in microvoids that form following the hydrolytic degradation of the polymer. In amorphous copolymers containing hydrophobic segments (desaminotyrosyl-tyrosine ethyl ester) and hydrophilic blocks (poly(ethylene glycol) (PEG)), a sequence of distinct regimes of hydration were observed: homogeneous distribution (∼10Å length scales) at <13 wt.% PEG (∼1 water per EG), clusters of hydrated domains (∼50Å radius) separated at 24 wt.% PEG (1-2 water per EG), uniformly distributed hydrated domains at 41 wt.% PEG (∼4 water per EG) and phase inversion at >50 wt.% PEG (>6 water per EG). Increasing the PEG content increased the number of these domains with only a small decrease in distance between the domains. These discrete domains appeared to coalesce to form submicron droplets at ∼60°C, above the melting temperature of crystalline PEG. The significance of such observations on the evolution of micrometer-size channels that form during hydrolytic erosion is discussed.