Published in

Society for Neuroscience, Journal of Neuroscience, 11(34), p. 4070-4075, 2014

DOI: 10.1523/jneurosci.5410-13.2014

Links

Tools

Export citation

Search in Google Scholar

Maturation of AMPAR Composition and the GABAAR Reversal Potential in hPSC-Derived Cortical Neurons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Rodent-based studies have shown that neurons undergo major developmental changes to ion channel expression and ionic gradients that determine their excitation-inhibition balance. Neurons derived from human pluripotent stem cells theoretically offer the potential to study classical developmental processes in a human-relevant system, although this is currently not well explored. Here, we show that excitatory cortical-patterned neurons derived from multiple human pluripotent stem cell lines exhibit native-like maturation changes in AMPAR composition such that there is an increase in the expression of GluA2(R) subunits. Moreover, we observe a dynamic shift in intracellular Cllevels, which determines the reversal potential of GABAAR-mediated currents and is influenced by neurotrophic factors. The shift is concomitant with changes in KCC2 and NKCC1 expression. Because some human diseases are thought to involve perturbations to AMPAR GluA2 content and others in the chloride reversal potential, human stem-cell-derived neurons represent a valuable tool for studying these fundamental properties.