Published in

Cell Press, Cell Metabolism, 5(22), p. 825-837

DOI: 10.1016/j.cmet.2015.09.004

Links

Tools

Export citation

Search in Google Scholar

Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

O2 sensing is essential for mammalian homeostasis. Peripheral chemoreceptors such as the carotid body (CB) contain cells with O2-sensitive K+ channels, which are inhibited by hypoxia to trigger fast adaptive cardiorespiratory reflexes. How variations of O2 tension (PO2) are detected and the mechanisms whereby these changes are conveyed to membrane ion channels have remained elusive. We have studied acute O2 sensing in conditional knockout mice lacking mitochondrial complex I (MCI) genes. We inactivated Ndufs2, which encodes a protein that participates in ubiquinone binding. Ndufs2-null mice lose the hyperventilatory response to hypoxia, although they respond to hypercapnia. Ndufs2-deficient CB cells have normal functions and ATP content but are insensitive to changes in PO2. Our data suggest that chemoreceptor cells have a specialized succinate-dependent metabolism that induces an MCI state during hypoxia, characterized by the production of reactive oxygen species and accumulation of reduced pyridine nucleotides, which signal neighboring K+ channels. ; This research was supported by the Botín Foundation and the Spanish Ministries of Science and Innovation and Health (SAF program and ISCiii PIE13/0004). M.C.F.-A. received a predoctoral fellowship (FPI program). ; Peer Reviewed