American Physical Society, Physical review B, 19(91), 2015
DOI: 10.1103/physrevb.91.195428
Full text: Download
We analyze theoretically optical generation of a spin-polarized charge current (photogalvanic effect) and spin polarization in graphene with Rashba spin-orbit coupling. An external magnetic field is applied in the graphene plane, which plays a crucial role in the mechanism of current generation. We predict a highly efficient resonant-like photogalvanic effect in a narrow frequency range which is determined by the magnetic field. A relatively less efficient photogalvanic effect appears in a broader frequency range, determined by the electron concentration and spin-orbit coupling strength.