Published in

Cambridge University Press, Annals of Glaciology, 1(37), p. 317-324

DOI: 10.3189/172756403781815924

Links

Tools

Export citation

Search in Google Scholar

Estimation of water content in a temperate glacier from radar and seismic sounding data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractRadio-wave velocity measurements in temperate and polythermal glaciers, combined with dielectric mixture formulae by Looyenga or Paren, have been used during the last decade to estimate the water content in temperate ice. We have used a similar mixture formula by Riznichenko, but based on elastic properties of the material, to estimate the water content from seismic velocity data. To compare the suitability of the two methods, we have used seismic and radar data from a temperate glacier on an Antarctic island. The estimated water contents are within 0.4–2.3% (average 1.2 ±0.6%) when radio-wave velocities are used, and within 0.9–3.2% (average 2.2±0.9%) when seismic velocities are used. These results are similar to those directly measured from ice cores and to those estimated from radar data on other temperate glaciers. The water-content estimates from seismic data are higher than those from radar data, which we attribute to the different behaviour of seismic and radar velocities as functions of density. Near-surface conditions (ice–firn conditions, presence of crevasses, etc.) have a strong influence on the propagation of elastic and electromagnetic waves, and thus on the accuracy of the velocity determinations and water-content estimates, and so should not be disregarded.