Dissemin is shutting down on January 1st, 2025

Published in

American Association of Neurological Surgeons, Journal of Neurosurgery: Spine, 3(3), p. 224-229, 2005

DOI: 10.3171/spi.2005.3.3.0224

Links

Tools

Export citation

Search in Google Scholar

Thoracic transfacet pedicle screw fixation: a new instrumentation technique

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Object.Pedicle screw instrumentation of the thoracic spine remains technically challenging. Transverse process and costotransverse screw fixation techniques have been described as alternatives to pedicle screw fixation (PSF). In this study, the authors introduce thoracic transfacet PSF and compare its experimental biomechanical results with those of standard PSF in short-term cyclic loading in cadaveric thoracic specimens.Methods.Specimens were tested intact for six cycles at compressive loads of 250 N offset by 1 cm along appropriate axes to induce flexion, extension, and left and right lateral bending. The specimens were then fixed with either a pedicle screw/rod construct or transfacet pedicle screws and retested in the same fashion. After this sequence, specimens were loaded until failure in flexion mode at a rate of 5 mm/minute was observed.Both fixation constructs provided significantly greater stiffnesses than that demonstrated when the specimen was intact (p < 0.05, two-way analysis of variance). Additionally, the two constructs were statistically equivalent in terms of stiffness and load-to-failure values (p < 0.05, two-tailed nonpaired t-test). The only difference observed was that the low midthoracic region (T7–9) was biomechanically weaker than the upper midthoracic and lower thoracic areas in flexion after the destabilization and instrumentation-augmented stabilization procedures.Conclusions.In selected thoracic surgical procedures, transfacet PSF may, after analysis of long-term biomechanical data, potentially become a reasonable alternative to conventional PSF.