Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Letters, 17(39), p. 5066, 2014

DOI: 10.1364/ol.39.005066

Links

Tools

Export citation

Search in Google Scholar

Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An all-fiber optic catheter-based polarization-sensitive optical coherence tomography system is demonstrated. A novel multiplexing method was used to illuminate the sample, splitting the light from a 58.5 kHz Fourier-domain mode-locked laser such that two different polarization states, alternated in time, are generated by two semiconductor optical amplifiers. A 2.3 mm forward-view cone-scanning catheter probe was designed, fabricated, and used to acquire sample scattering intensity and phase retardation images. The system was first verified with a quarter-wave plate and then by obtaining intensity and phase retardation images of high-birefringence plastic, human skin in vivo, and untreated and thermally ablated porcine myocardium ex vivo. The system can potentially in vivo image of the cardiac wall to aid radio-frequency ablation therapy for cardiac arrhythmias.