Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 12(107), p. 122405, 2015

DOI: 10.1063/1.4931429

Links

Tools

Export citation

Search in Google Scholar

Spin-orbit torques for current parallel and perpendicular to a domain wall

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report field- and current-induced domain wall (DW) depinning experiments in Ta/Co20Fe60B20/MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show for the first time depinning measurements for a current sent parallel to the DW and compare its depinning efficiency with the conventional case of current flowing perpendicularly to the DW. We find that the maximum efficiency is similar for both current directions within the error bars, which is in line with a dominating damping-like spin-orbit torque (SOT) and indicates that no large additional torques arise for currents parallel to the DW. Finally, we find a varying dependence of the maximum depinning efficiency angle for different DWs and pinning levels. This emphasizes the importance of our full angular scans compared to previously used measurements for just two field directions (parallel and perpendicular to the DW) and shows the sensitivity of the spin-orbit torque to the precise DW structure and pinning sites. ; Comment: 11 pages, 3 figures