Published in

American Physiological Society, American Journal of Physiology - Renal Physiology, 4(304), p. F348-F355, 2013

DOI: 10.1152/ajprenal.00568.2012

Links

Tools

Export citation

Search in Google Scholar

Loss of GSTM1, a NRF2 target, is associated with accelerated progression of hypertensive kidney disease in the African American Study of Kidney Disease (AASK)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Oxidative stress is acknowledged to play a role in kidney disease progression. Genetic variants that affect the capacity to handle oxidative stress may therefore influence the outcome of kidney disease. We examined whether genetic variants of the GSTM1 gene, a member of a superfamily of glutathione S-transferases, influence the course of kidney disease progression in participants of the African American Study of Kidney Disease (AASK) trial. Groups with and without the common GSTM1 null allele, GSTM1(0), differed significantly in the time to a glomerular filtration rate (GFR) event or dialysis ( P = 0.04) and in the time to GFR event, dialysis, or death ( P = 0.02). The hazard ratios (HR) for the time to a GFR event or dialysis in those with two or one null allele relative to those possessing none were 1.88 [95% confidence interval (CI), 1.07 to 3.30, P = 0.03] and 1.68 (95% CI, 1.00 to 2.84, P < 0.05), respectively. For the time to GFR event, dialysis, or death, the HR for two null alleles was 2.06 (95% CI, 1.20 to 3.55, P = 0.01) and for one null allele 1.70 (95% CI, 1.02 to 2.81, P = 0.04). We demonstrated that GSTM1 directly regulates intracellular levels of 4-hydroxynonenal (4-HNE) in vascular smooth muscle cells. Furthermore, we showed that renal 4-HNE levels and GSTM1 are both increased after reduction of renal mass (RRM) in the mouse. We conclude that GSTM1 is normally upregulated in chronic kidney disease (CKD) in a protective response to increased oxidative stress. A genetic variant that results in loss of GSTM1 activity may be deleterious in CKD.