Published in

Oxford University Press, Publications of Astronomical Society of Japan, 2(60), p. 345-375, 2008

DOI: 10.1093/pasj/60.2.345

Links

Tools

Export citation

Search in Google Scholar

Subaru Weak Lensing Study of Seven Merging Clusters: Distributions of Mass and Baryons

Journal article published in 2007 by Nobuhiro Okabe ORCID, Keiichi Umetsu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present and compare projected distributions of mass, galaxies, and the intracluster medium (ICM) for a sample of merging clusters of galaxies based on the joint weak-lensing, optical photometric, and X-ray analysis. Our sample comprises seven nearby Abell clusters, for which we have conducted systematic, deep imaging observations with Suprime-Cam on Subaru telescope. Our seven target clusters, representing various merging stages and conditions, allow us to investigate in details the physical interplay between dark matter, ICM, and galaxies associated with cluster formation and evolution. A1750 and A1758 are binary systems consisting of two cluster-sized components, A520, A754, A1758N, A1758S, and A1914 are on-going cluster mergers, and A2034 and A2142 are cold-front clusters. In the binary clusters, the projected mass, optical light, and X-ray distributions are overall similar and regular without significant substructures. On-going and cold-front merging clusters, on the other hand, reveal highly irregular mass distributions. Overall the mass distribution appears to be similar to the galaxy luminosity distribution, whereas their distributions are quite different from the ICM distribution in a various ways. We also measured for individual targets the global cluster parameters such as the cluster mass,the mass-to-light ratio, and the ICM temperature. A comparison of the ICM and virial temperatures of merging clusters from X-ray and weak-lensing analyses, respectively, shows that the ICM temperature of on-going and cold-front clusters is significantly higher than the cluster virial temperature by a factor of $∼ 2$. This temperature excess in the ICM could be explained by the effects of merger boosts.