Published in

American Association for Cancer Research, Cancer Prevention Research, 5(6), p. 428-436, 2013

DOI: 10.1158/1940-6207.capr-12-0431

Links

Tools

Export citation

Search in Google Scholar

Increased levels of urinary PGE-M, a biomarker of inflammation, occur in association with obesity, aging and lung metastases in patients with breast cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Elevated levels of COX-derived prostaglandin E2 (PGE2) occur in inflamed tissues. To evaluate the potential links between inflammation and breast cancer, levels of urinary prostaglandin E metabolite (PGE-M), a stable end metabolite of PGE2, were quantified. We enrolled 400 patients with breast cancer: controls with early breast cancer (n = 200), lung metastases (n = 100), and metastases to other sites (n = 100). Patients completed a questionnaire, provided urine, and had measurements of height and weight. Urinary PGE-M was quantified by mass spectrometry. Ever smokers with lung metastasis who had not been exposed to nonsteroidal anti-inflammatory drugs (NSAIDs) had the highest PGE-M levels. PGE-M levels were increased in association with elevated body mass index (BMI; P < 0.001), aging (P < 0.001), pack-year smoking history (P = 0.02), lung metastases (P = 0.02), and recent cytotoxic chemotherapy (P = 0.03). Conversely, use of NSAIDs, prototypic inhibitors of COX activity, was associated with reduced PGE-M levels (P < 0.001). On the basis of the current findings, PGE-M is likely to be a useful biomarker for the selection of high-risk subgroups to determine the use of interventions that aim to reduce inflammation and possibly the development and progression of breast cancer, especially in overweight and obese women. Cancer Prev Res; 6(5); 428–36. ©2013 AACR.