Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics D: Applied Physics, 24(46), p. 245202

DOI: 10.1088/0022-3727/46/24/245202

Links

Tools

Export citation

Search in Google Scholar

Transport control of dust particles via the electrical asymmetry effect: experiment, simulation and modelling

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The control of the spatial distribution of micrometer-sized dust particles in capacitively coupled radio frequency discharges is relevant for research and applications. Typically, dust particles in plasmas form a layer located at the sheath edge adjacent to the bottom electrode. Here, a method of manipulating this distribution by the application of a specific excitation waveform, i.e. two consecutive harmonics, is discussed. Tuning the phase angle \theta between the two harmonics allows to adjust the discharge symmetry via the Electrical Asymmetry Effect (EAE). An adiabatic (continuous) phase shift leaves the dust particles at an equilibrium position close to the lower sheath edge. Their levitation can be correlated with the electric field profile. By applying an abrupt phase shift the dust particles are transported between both sheaths through the plasma bulk and partially reside at an equilibium position close to the upper sheath edge. Hence, the potential profile in the bulk region is probed by the dust particles providing indirect information on plasma properties. The respective motion is understood by an analytical model, showing both the limitations and possible ways of optimizing this sheath-to-sheath transport. A classification of the transport depending on the change in the dc self bias is provided, and the pressure dependence is discussed. ; Comment: 25 pages, 16 figures