Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(452), p. 4307-4325

DOI: 10.1093/mnras/stv1605

Links

Tools

Export citation

Search in Google Scholar

500 Days of SN 2013dy: spectra and photometry from the ultraviolet to the infrared

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

SN 2013dy is a Type Ia supernova for which we have compiled an extraordinary dataset spanning from 0.1 to ~ 500 days after explosion. We present 10 epochs of ultraviolet (UV) through near-infrared (NIR) spectra with HST/STIS, 47 epochs of optical spectra (15 of them having high resolution), and more than 500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and slowly declining light curve (delta m(B) = 0.92 mag), shallow Si II 6355 absorption, and a low velocity gradient. We detect strong C II in our earliest spectra, probing unburned progenitor material in the outermost layers of the SN ejecta, but this feature fades within a few days. The UV continuum of SN 2013dy, which is strongly affected by the metal abundance of the progenitor star, suggests that SN 2013dy had a relatively high-metallicity progenitor. Examining one of the largest single set of high-resolution spectra for a SN Ia, we find no evidence of variable absorption from circumstellar material. Combining our UV spectra, NIR photometry, and high-cadence optical photometry, we construct a bolometric light curve, showing that SN 2013dy had a maximum luminosity of 10.0^{+4.8}_{-3.8} * 10^{42} erg/s. We compare the synthetic light curves and spectra of several models to SN 2013dy, finding that SN 2013dy is in good agreement with a solar-metallicity W7 model. ; Comment: 22 pages, 18 figures, replaced with version accecpted for publication in MNRAS