Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(450), p. 4458-4474

DOI: 10.1093/mnras/stv779

Links

Tools

Export citation

Search in Google Scholar

OMEGA -- OSIRIS Mapping of Emission-line Galaxies in A901/2: I.-- Survey description, data analysis, and star formation and AGN activity in the highest density regions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present an overview of and first results from the OMEGA survey: the OSIRIS Mapping of Emission-line Galaxies in the multi-cluster system A901/2. The ultimate goal of this project is to study star formation and AGN activity across a broad range of environments at a single redshift. Using the tuneable-filter mode of the OSIRIS instrument on GTC, we target Halpha and [NII] emission lines over a ~0.5 X 0.5 deg2 region containing the z~0.167 multi-cluster system A901/2. In this paper we describe the design of the survey, the observations and the data analysis techniques developed. We then present early results from two OSIRIS pointings centred on the cores of the A901a and A902 clusters. AGN and star-forming (SF) objects are identified using the [NII]/Halpha vs. W_Halpha (WHAN) diagnostic diagram. The AGN hosts are brighter, more massive, and possess earlier-type morphologies than SF galaxies. Both populations tend to be located towards the outskirts of the high density regions we study. The typical Halpha luminosity of these sources is significantly lower than that of field galaxies at similar redshifts, but greater than that found for A1689, a rich cluster at z~0.2. The Halpha luminosities of our objects translate into star-formation rates (SFRs) between ~0.02 and 6 Msun/yr. Comparing the relationship between stellar mass and Halpha-derived SFR with that found in the field indicates a suppression of star formation in the cores of the clusters. These findings agree with previous investigations of this multi-cluster structure, based on other star formation indicators, and demonstrate the power of tuneable filters for this kind of study. ; Comment: MNRAS accepted, 19 pages, 20 figures,1 table