Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Protein Science, 8(18), p. 1692-1701, 2009

DOI: 10.1002/pro.152

Links

Tools

Export citation

Search in Google Scholar

Native like structure in the unfolded state of the villin headpiece helical subdomain, an ultrafast folding protein

Journal article published in 2009 by Wenli Meng, Bing Shan, Yuefeng Tang, Daniel P. Raleigh ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The villin headpiece subdomain, HP36, is the smallest naturally occurring protein that folds cooperatively. Its small size, rapid folding, and simple three-helix topology have made it an extremely popular system for computational studies of protein folding. The role of unfolded state structure in rapid folding is an area of active investigation, but relatively little is known about the properties of unfolded states under native conditions. A peptide fragment, HP21, which contains the first and second helices of HP36 has been shown to be a good model for structure in the unfolded state of the intact domain but a detailed description of the conformational propensities of HP21 is lacking and the balance between native and nonnative interactions is not known. A series of three-dimensional NMR experiments were performed on (13)C, (15)N-labeled HP21 to investigate in detail its conformational propensities. Analysis of (13)C(alpha), (13)C(beta), (13)CO chemical shifts, Deltadelta(13)C(alpha) - Deltadelta(13)C(beta) secondary shifts, the secondary structure propensity scores, NOEs, (15)N R(2) values and comparison of experimental chemical shifts with those of HP36 and with chemical shifts calculated using the SHIFTS and SHIFTX programs all indicate that there is significant native like structure in the HP21 ensemble, and thus by implication in the unfolded state of HP36.