Published in

Wiley, Proteomics, 23-24(14), p. 2647-2662, 2014

DOI: 10.1002/pmic.201400165

Links

Tools

Export citation

Search in Google Scholar

The proteome under translational control

Journal article published in 2014 by Daria Gawron, Kris Gevaert, Petra Van Damme ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A single eukaryotic gene can give rise to a variety of protein forms (proteoforms) as a result of genetic variation and multilevel regulation of gene expression. In addition to alternative splicing, an increasing line of evidence shows that alternative translation contributes to the overall complexity of proteomes. Identifying the repertoire of proteins and micropeptides expressed by alternative selection of (near-)cognate translation initiation sites and different reading frames however remains challenging with contemporary proteomics. MS-enabled identification of proteoforms is expected to benefit from transcriptome and translatome data by the creation of customized and sample-specific protein sequence databases. Here, we focus on contemporary integrative omics approaches that complement proteomics with DNA- and/or RNA-oriented technologies to elucidate the mechanisms of translational control. Together, these technologies enable to map the translation (initiation) landscape and more comprehensively define the inventory of proteoforms raised upon alternative translation, thus assisting in the (re-)annotation of genomes.