Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (609), 2000

DOI: 10.1557/proc-609-a22.6

Links

Tools

Export citation

Search in Google Scholar

Doping of amorphous and microcrystalline silicon films by hot-wire CVD and RFPECVD at low substrate temperatures on plastic substrates

Journal article published in 2000 by P. Alpuim ORCID, V. Chu, J. P. Conde
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTDeposition of n and p-type amorphous (a-Si:H) and microcrystalline (µc-Si:H) silicon thin films on polyethylene terephthalate (PET) at substrate temperatures (Tsub) of 100°C and 25°C (RT) prepared by hot-wire (HW) chemical vapor deposition and radio-frequency (RF) plasma-enhanced chemical vapor deposition is studied as a function of hydrogen dilution. Doping is achieved by addition of phosphine (ntype) and diborane (p-type) to the gas phase reactive mixture. At Tsub=100°C, n-type a-Si:H is obtained by HW with dark conductivity σd10−4 ω−1cm−1 and by RF with σd~10−3 ω−1cm−1. P-type a-Si:H is obtained by HW with σd=8×10−7 ω−1cm−1 and by RF with σd=6×10−7 ω−1cm−1. Decreasing the temperature of deposition to 25°C decreases the sd of RF n-type amorphous samples to 5×10−5 ω−1cm−1 but the σd of p-type samples remains unchanged. RT HW a-Si:H films show a decrease of sd both for ntype film (σd=4×10−6 ω−1cm−1) and p-type film (σd=1.2×10−7 ω−1cm−1). N-type µc-Si:H was obtained by HW with σd=7×10−2 ω−1cm−1 and by RF with σd>10−2 ω−1cm−1 at 100°C. Using the same Tsub, p-type µc-Si:H was deposited by HW and by RF with σd~0.5 ω−1cm−1. At RT, only p-type µc-Si:H films could be prepared using HW (σd~1 ω−1cm−1) and RF (σd=4×10−3 ω−1cm−1). The structural properties of the films were studied using Raman spectroscopy. The structural and transport properties were correlated.