Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (609), 2000

DOI: 10.1557/proc-609-a21.2

Links

Tools

Export citation

Search in Google Scholar

Low Temperature Thin-Film Microelectromechanical Devices on Plastic Substrates

Journal article published in 2000 by M. Boucinha, P. Brogueira, V. Chu, P. Alpuim ORCID, J. P. Conde
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTAir-gap micromachined structures such as bridges and cantilevers were fabricated on 50 and 125 µm-thick polyethylene terephthalate (PET) plastic substrates. The maximum processing temperature using PET is limited to 110 °C. Two surface micromachining processes on PET which used two different sacrificial layers - photoresist and Al - were developed. Several materials were used as structural layers in the microstructures including Al, TiW, amorphous silicon (a-Si:H) and a bilayer of a-Si:H and Al. The maximum length of free-standing bridges and cantilevers is discussed as a function of the fabrication process. The bridge structures were actuated electrostatically, in a DC switch setup configuration, and the critical voltage as a function of the length was measured. Mechanical actuation and optical detection were used, in an AC mode, for the measurement of the resonance frequency of bridge structures.