Dissemin is shutting down on January 1st, 2025

Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1446), 2012

DOI: 10.1557/opl.2012.1222

Links

Tools

Export citation

Search in Google Scholar

Role of Pt Nanoparticles in Photoreactions on TiO2 Photoelectrodes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTHighly efficient Pt-TiO2 composite photoelectrodes were synthesized by combining two novel deposition methods: ACVD and a room temperature RF (radio frequency) magnetron sputtering method. A room temperature RF magnetron sputtering method allowed uniform deposition of Pt nanoparticles (NPs) onto the as-synthesized nanostructured columnar TiO2 films by ACVD. Pt NP sizes from 0.5 to 3 nm demonstrating a high particle density (>1012 cm−2) could be achieved by varying deposition time with constant pressure and power intensity. As-synthesized Pt-TiO2 films were used as photoanodes for water photolysis. Pt nanoparticles deposited onto the TiO2 film for 20s produced the highest photocurrent (7.92 mA/cm2 to 9.49 mA/cm2) and maximized the energy conversion efficiency (16.2 % to 21.2 %) under UV illumination. However, as the size of Pt particles increased, more trapping sites for photogenerated electron-hole pairs decreased photoreaction.