Dissemin is shutting down on January 1st, 2025

Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1445), 2012

DOI: 10.1557/opl.2012.1220

Links

Tools

Export citation

Search in Google Scholar

Nano-Biohybrid Light-Harvesting Systems for Solar Energy Applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTAll photosynthetic organisms contain light-harvesting antenna complexes and electron transfer complexes called reaction centers. Some photosynthetic bacteria contain large (~100 MDa) peripheral antenna complexes known as chlorosomes. Chlorosomes lose their reaction center when they are extracted from organisms. Lead sulfide (PbS) quantum dots (QDs) were used for artificial reaction centers. Successive ionic layer adsorption and reaction (SILAR) allows different sizes of PbS QDs with different cycles to be easily deposited onto the nanostructured columnar titanium dioxide (TiO2) film with single crystal. Chlorosomes were sequentially deposited onto the PbS QDs surface by electrospray. Compared to the typical PbS QD sensitized solar cells, overall energy conversion efficiency increased with the Förster resonance energy transfer (FRET) effect between PbS QDs and chlorosomes.