Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1298), 2011

DOI: 10.1557/opl.2011.492

Links

Tools

Export citation

Search in Google Scholar

Nanostructured Engineering Alloys for Nuclear Application

Journal article published in 2011 by Peter Hosemann, Erich Stergar, Andrew T. Nelson ORCID, C. Vieh, Stuart A. Maloy
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTIn advanced nuclear applications, high temperature and a corrosive environment are present in addition to a high dose radiation field causing displacement damage in the material. In recent times it has been shown that Nanostructured Ferritic Alloys (NFA’s) such as advanced Oxide Dispersion Strengthened (ODS) steels are suitable for this environment as they tolerate high dose irradiation without significant changes in microstructure or relevant mechanical properties.Ion beam irradiation is a fast and cost effective way to induce radiation damage in materials but has limited penetration depth. Therefore, small scale mechanical testing such as nanoindentation and micro compression testing in combination with FIB based sample preparation for micro structural characterization has to be performed allowing a full assessment of the materials’ behavior under radiation environment. In this work two different ODS materials have been irradiated using proton and combined proton and He beams up to 1 dpa at different temperatures. Nanoindentation and LEAP measurements were performed in order to assess the changes in properties of these alloys due to irradiation. The same techniques were applied to intermetallic nanostructured alloys in order to investigate the effectiveness of the metal-intermetallic interface to provide defect sinks for He and radiation damage. It was found that irradiation can cause the formation of intermetallic particles even at room temperature while increasing the material strength significantly.