Dissemin is shutting down on January 1st, 2025

Published in

Springer, Journal of Materials Research, 4(21), p. 910-914, 2006

DOI: 10.1557/jmr.2006.0112

Links

Tools

Export citation

Search in Google Scholar

Solution-processed lanthanum zirconium oxide as a barrier layer for high Ic-coated conductors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High-quality lanthanum zirconium oxide (La2Zr2O7 or LZO) films have been deposited and processed on Ni–W substrates using a sol-gel processing approach. It has been demonstrated that crack-free coatings with thicknesses up to 100 nm can be processed in a single step, while thicker coatings (200–225 nm) were processed using a multiple coating and annealing process. Using simulated metalorganic deposition (MOD)-YBa2Cu3O7−δ (YBCO) processing conditions, the barrier properties of the sol-gel LZO coating with a thickness of 120 nm were found to be comparable to that of the standard 3-layer buffer stack deposited using physical vapor deposition. Secondary ion mass spectroscopy depth profile analysis of LZO films annealed in oxygen-18 shows that LZO effectively stops the diffusion of Ni within the first 80–100 nm. Using MOD processes, a CeO2 cap layer and superconducting YBCO layer were deposited on sol-gel LZO/Ni–W. For the first time, using such an all-solution conductor architecture, a critical current (Ic) of 140 A/cm with a corresponding critical current density (Jc) of 1.75 MA/cm2 has been demonstrated. Using a very thin Y2O3 seed layer (∼10 nm) deposited by electron beam evaporation; improved texture quality in the LZO layers has been demonstrated. The performance of the LZO deposited on these samples was evaluated using a sputtered CeO2 cap layer and MOD YBCO layer. Critical currents of up to 255 A/cm (3.2 MA/cm2) with 0.8-μm-thick YBCO films have been demonstrated, comparable to the performance of films grown using physical vapor deposited yttria stabilized zirconia as a barrier layer. Similar experiments using an MOD-CeO2 cap layer and MOD-YBCO layer yielded critical currents of 200 A/cm (2.5 MA/cm2) with 0.8-μm-thick YBCO films.