Published in

Elsevier, Molecular and Cellular Proteomics, 2(12), p. 277-282, 2013

DOI: 10.1074/mcp.m112.017087

Links

Tools

Export citation

Search in Google Scholar

Alpha Actinin is Specifically Recognized by Multiple Sclerosis Autoantibodies Isolated Using an N-Glucosylated Peptide Epitope*

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Sophisticated approaches have recently led to the identification of novel autoantigens associated with Multiple Sclerosis (MuS), e.g. neurofascin, contactin, CNPase and other T cell receptor membrane anchored proteins. These putative antigens, although differing from the conventional myelin derivatives, are conceptually based on an animal model of experimental autoimmune encephalomyelitis. In this report we describe the identification of putative antigens based on their recognition by autoantibodies isolated from MuS patient serum. In a previous work from this laboratory we have shown that a peptide probe, named CSF114(Glc), specifically identifies serum autoantibodies in a subset of MuS patients, representing approximately 30% of the patient population. The autoantibodies, purified from MuS patients' sera (six), through CSF114(Glc) affinity chromatography, detected three immunoreactive protein bands present in the rat brain. Proteomic analysis of the immunoreactive bands, involving MALDI and MS/MS techniques, revealed the presence of four proteins distinguishable by their mass: alpha fodrin, alpha actinin 1, creatine kinase, and CNPase. The immunoreactive profile of these rat brain proteins was compared with that of commercially available standard proteins by challenging against either CSF114(Glc) purified MuS autoantibodies, or monoclonal antibodies. Further discrimination among the rat brain proteins was provided by these procedure: whereas monoclonal antibodies recognized all rat brain proteins, MuS specific isolated antibodies recognize only Alpha actinin 1 as a putative antigen. In fact, Alpha actinin 1 displayed a robust immunoreactive response against all MuS patients sera examined, whereas the other three bands were not consistently detectable. Thus, alpha actinin 1, a cytoskeleton protein implicated in inflammatory/degenerative autoimmune diseases (lupus nephritis and autoimmune hepatitis) might be regarded as a novel MuS autoantigen, perhaps a prototypic biomarker for the inflammatory/degenerative process typical of the disease.