Published in

Society for Neuroscience, Journal of Neuroscience, 47(27), p. 12817-12828, 2007

DOI: 10.1523/jneurosci.2442-07.2007

Links

Tools

Export citation

Search in Google Scholar

Plasticity of Neuron-Glial Interactions Mediated by Astrocytic EphARs

Journal article published in 2007 by Michael W. Nestor, Lee-Peng Mok, Mohan E. Tulapurkar, Scott M. Thompson
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Ephrin (Eph) signaling via Eph receptors affects neuronal structure and function. We report here that exogenous ephrinAs (EphAs) induce outgrowth of filopodial processes from astrocytes within minutes in rat hippocampal slice cultures. Identical effects were induced by release of endogenous ephrinAs by cleavage of their glycosylphosphatidylinositol anchor. Reverse transcription-PCR and immunocytochemistry revealed the expression of multiple EphA receptors (EphARs) in astrocytes. Exogenous and endogenous ephrins did not induce process outgrowth from astrocytes transfected with a kinase-dead EphAR construct, indicating that the critical EphARs were located on glia. Concomitant with these morphological changes, ephrinA reduced the frequency of (S)-3,5-dihydroxyphenylglycine-evoked NMDA receptor-mediated inward currents in CA1 pyramidal cells, elicited by release of glutamate from glial cells. The sensitivity of CA1 cell synaptic or extrasynaptic NMDA receptors was unaffected by ephrinA, indicating that this effect was mediated by inhibition of glutamate release from glial cells. Finally, ephrinA application decreased the frequency and increased the duration of spontaneous oscillations of the intracellular [Ca2+] in astrocytes. We conclude that ephrinA–EphA signaling is a pluripotent regulator of neuron–astrocyte interactions mediating rapid structural and functional plasticity.