Published in

International Union of Crystallography, Acta Crystallographica. Section d, Structural Biology, 1(72), p. 22-33, 2016

DOI: 10.1107/s2059798315021142

Links

Tools

Export citation

Search in Google Scholar

The structure of VgrG1 fromPseudomonas aeruginosa, the needle tip of the bacterial type VI secretion system

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The type VI secretion system (T6SS) is a mechanism that is commonly used by pathogenic bacteria to infect host cells and for survival in competitive environments. This system assembles on a core baseplate and elongates like a phage puncturing device; it is thought to penetrate the target membrane and deliver effectors into the host or competing bacteria. Valine–glycine repeat protein G1 (VgrG1) forms the spike at the tip of the elongating tube formed by haemolysin co-regulated protein 1 (Hcp1); it is structurally similar to the T4 phage (gp27)3–(gp5)3puncturing complex. Here, the crystal structure of full-length VgrG1 fromPseudomonas aeruginosais reported at a resolution of 2.0 Å, which through a trimeric arrangement generates a needle-like shape composed of two main parts, the head and the spike, connectedviaa small neck region. The structure reveals several remarkable structural features pointing to the possible roles of the two main segments of VgrG1: the head as a scaffold cargo domain and the β-roll spike with implications in the cell-membrane puncturing process and as a carrier of cognate toxins.