Published in

Frontiers Media, Frontiers in Plant Science, (4)

DOI: 10.3389/fpls.2013.00267

Links

Tools

Export citation

Search in Google Scholar

Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples

Journal article published in 2013 by Marcus A. Koch, Dmitry A. German ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Taxonomy and systematics provide the names and evolutionary framework for any biological study. Without these names there is no access to a biological context of the evolutionary processes which gave rise to a given taxon: close relatives and sister species (hybridization), more distantly related taxa (ancestral states), for example. This is not only true for the single species a research project is focusing on, but also for its relatives, which might be selected for comparative approaches and future research. Nevertheless, taxonomical and systematic knowledge is rarely fully explored and considered across biological disciplines. One would expect the situation to be more developed with model organisms such as Noccaea, Arabidopsis, Schrenkiella and Eutrema (Thellungiella). However, we show the reverse. Using Arabidopsis halleri and Noccaea caerulescens, two model species among metal accumulating taxa, we summarize and reflect past taxonomy and systematics of Arabidopsis and Noccaea and provide a modern synthesis of taxonomic, systematic and evolutionary perspectives. The same is presented for several species of Eutrema s. l. and Schrenkiella recently appeared as models for studying stress tolerance in plants and widely known under the name Thellungiella.