Published in

American Physical Society, Physical Review Letters, 23(107), 2011

DOI: 10.1103/physrevlett.107.236803

Links

Tools

Export citation

Search in Google Scholar

Quantum confined electronic states in atomically well-defined graphene nanostructures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Despite the enormous interest in the properties of graphene and the potential of graphene nanostructures in electronic applications, the study of quantum confined states in atomically well-defined graphene nanostructures remains an experimental challenge. Here, we study graphene quantum dots (GQDs) with well-defined edges in the zigzag direction, grown by chemical vapor deposition (CVD) on an iridium(111) substrate, by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). We measure the atomic structure and local density of states (LDOS) of individual GQDs as a function of their size and shape in the range from a couple of nanometers up to ca. 20 nm. The results can be quantitatively modeled by a relativistic wave equation and atomistic tight-binding calculations. The observed states are analogous to the solutions of the text book "particle-in-a-box" problem applied to relativistic massless fermions. ; Comment: accepted for publication in Phys. Rev. Lett