Published in

SAGE Publications, Magnetic Resonance Insights, (4), p. MRI.S6028, 2010

DOI: 10.4137/mri.s6028

Links

Tools

Export citation

Search in Google Scholar

Detection of Local Prostate Metabolites by HRMAs NMR Spectroscopy: A Comparative Study of Human and Rat Prostate Tissues

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of magnetic resonance spectroscopy (MRS) for the detection of in-vivo metabolic perturbations is increasing in popularity in Prostate Cancer (PCa) research on both humans and rodent models. However, there are distinct metabolic differences between species and prostate areas; a fact making general conclusions about PCa difficult. Here, we use High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) spectroscopy to provide tissue specific identification of metabolites and their relative ratios; information useful in providing insight into the biochemical pathways of the prostate. As our NMR-based approach reveals, human and rat prostate tissues have different metabolic signatures as reflected in numerous key metabolites, including citrate and choline compounds, but also aspartate, lysine, taurine, glutamate, glutamine, creatine and inositol. In general, distribution of these metabolites is not only highly dependent on the species (human versus rat), but also on the location (lobe/zone) in the prostate tissue and the sample pathology; an observation making HRMAS NMR of intact tissue samples a promising method for extracting differences and common features in various experimental prostate cancer models.