Published in

SAGE Publications, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 3(221), p. 315-324, 2007

DOI: 10.1243/09544119jeim119

Links

Tools

Export citation

Search in Google Scholar

Experimental validation of a finite element model of a composite tibia

Journal article published in 2007 by H. A. Gray, A. B. Zavatsky, F. Taddei, L. Cristofolini, H. S. Gill ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Composite bones are synthetic models made to simulate the mechanical behaviour of human bones. Finite element (FE) models of composite bone can be used to evaluate new and modified designs of joint prostheses and fixation devices. The aim of the current study was to create an FE model of a composite tibia and to validate it against results obtained from a comprehensive set of experiments. For this, 17 strain rosettes were attached to a composite tibia (model 3101, Pacific Research Laboratories, Vashon, Washington, USA). Surface strains and displacements were measured under 13 loading conditions. Two FE models were created on the basis of computed tomography scans. The models differed from each other in the mesh and material properties assigned. The experiments were simulated on them and the results compared with experimental results. The more accurate model was selected on the basis of regression analysis. In general, experimental strain measurements were highly repeatable and compared well with published results. The more accurate model, in which the inner elements representing the foam were assigned isotropic material properties and the elements representing the epoxy layer were assigned transversely isotropic material properties, was able to simulate the mechanical behaviour of the tibia with acceptable accuracy. The regression line for all axial loads combined had a slope of 0.999, an intercept of -6.24 microstrain, and an R2 value of 0.962. The root mean square error as a percentage was 5 per cent.