Published in

The Company of Biologists, Journal of Cell Science, 7(117), p. 1017-1024, 2004

DOI: 10.1242/jcs.00967

Links

Tools

Export citation

Search in Google Scholar

Parkinson's disease α-synuclein mutations exhibit defective axonal transport in cultured neurons

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

α-Synuclein is a major protein constituent of Lewy bodies and mutations in α-synuclein cause familial autosomal dominant Parkinson's disease. One explanation for the formation of perikaryal and neuritic aggregates of α-synuclein, which is a presynaptic protein, is that the mutations disrupt α-synuclein transport and lead to its proximal accumulation. We found that mutant forms of α-synuclein, either associated with Parkinson's disease (A30P or A53T) or mimicking defined serine, but not tyrosine, phosphorylation states exhibit reduced axonal transport following transfection into cultured neurons. Furthermore, transfection of A30P, but not wild-type, α-synuclein results in accumulation of the protein proximal to the cell body. We propose that the reduced axonal transport exhibited by the Parkinson's disease-associated α-synuclein mutants examined in this study might contribute to perikaryal accumulation of α-synuclein and hence Lewy body formation and neuritic abnormalities in diseased brain.