Published in

Trans Tech Publications, Materials Science Forum, (812), p. 333-338, 2015

DOI: 10.4028/www.scientific.net/msf.812.333

Links

Tools

Export citation

Search in Google Scholar

Electrochemical Impedance Spectroscopy as a Prospective Tool for the Characterization of the Intermetallic Microstructure of Lead Free Solder

Journal article published in 2015 by Tamás Hurtony, Attila Bonyár ORCID, Péter Gordon
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study the possibility to apply electrochemical impedance spectroscopy as an alternative method for the characterisation of the intermetallic microstructures of Sn-3.5Ag lead free solder samples was investigated. The aim of the study is to compare the electrochemical impedance spectra of solder samples, reflowed with different heat profiles. A quenching technique was applied in order to solidify the solder samples in cylindrical crucibles. Differences in the microstructures of the solidified alloys were achieved by changing the temperature of the quenching media. The molded and cross sectioned specimens were observed using both optical microscopy and scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS). The microstructure of the ingots was revealed by selective electrochemical etching. The electrochemical impedance spectrum (EIS) was measured before and also after the selective etching process. The complex impedance spectra contain information regarding the characterized microstructure. Our aim is to determine quantitative parameters which are identical to the characteristics of the microstructure.