Published in

Applications and Techniques, p. 27-53

DOI: 10.4018/978-1-60566-956-4.ch002

Concepts, Methodologies, Tools and Applications, p. 769-792

DOI: 10.4018/978-1-60960-818-7.ch404

Links

Tools

Export citation

Search in Google Scholar

Computer-Aided Detection and Diagnosis of Breast Cancer Using Machine Learning, Texture and Shape Features:

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Breast cancer is a malignant (cancer) tumor that starts from cells of the breast, being the major cause of deaths by cancer in the female population. There has been tremendous interest in the use of image processing and analysis techniques for computer aided detection (CAD)/ diagnostics (CADx) in digital mammograms. The goal has been to increase diagnostic accuracy as well as the reproducibility of mammographic interpretation. CAD/CADx systems can aid radiologists by providing a second opinion and may be used in the first stage of examination in the near future, providing the reduction of the variability among radiologists in the interpretation of mammograms. This chapter provides an overview of techniques used in computer-aided detection and diagnosis of breast cancer. The authors focus on the application of texture and shape tissues signature used with machine learning techniques, like support vector machines (SVM) and growing neural gas (GNG).