Published in

Wiley, Journal of Leukocyte Biology, 5(84), p. 1248-1255

DOI: 10.1189/jlb.1207844

Links

Tools

Export citation

Search in Google Scholar

Pivotal Advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractMultiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the CNS, most frequently starting with a series of bouts, each followed by complete remission and then a secondary, progressive phase during which the neurological deficit increases steadily. The underlying molecular mechanisms responsible for disease progression are still unclear. Herein, we demonstrate that high mobility group box chromosomal protein 1 (HMGB1), a DNA-binding protein with proinflammatory properties, is evident in active lesions of MS and experimental autoimmune encephalomyelitis (EAE) and that HMGB1 levels correlate with active inflammation. Furthermore, the expression of the innate HMGB1 receptors—receptor for advanced glycation end products, TLR2, and TLR4—was also highly increased in MS and rodent EAE. Additionally, in vitro activation of rodent CNS-derived microglia and bone marrow-derived macrophages demonstrated that microglia were equally as capable as macrophages of translocating HMGB1 following LPS/IFN-γ stimulation. Significant expression of HMGB1 and its receptors on accumulating activated macrophages and resident microglia may thus provide a positive feedback loop that amplifies the inflammatory response during MS and EAE pathogenesis.